Design Guide for the AS1124-BCM5481

Revision 0.4 October 2007

Confidential
REVISION HISTORY

The revision history of the AN020 reference design document is shown in Table 1.

<table>
<thead>
<tr>
<th>Version</th>
<th>Author</th>
<th>History Details</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>D.Jolly</td>
<td>Initial release of AN020 document for review</td>
<td>09-04-07</td>
</tr>
<tr>
<td>0.4</td>
<td>J.Glick</td>
<td>Re-format AN020 document for review</td>
<td>10-01-07</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Revision History ..2
Table of Contents ...3
List of figures ...3
List of tables ..3
Introduction ..4
 Manual organization ...4
 DEFINitions ...4
Product Features ...5
 Features ..5
 Application block Diagram ..5
 DESIGN block Diagram ...5
Functional Overview ..6
Reference Design Implementation ...7
 BCM5481 Implementation ...7
 AS1124 Implementation ...8
Reference Design schematics ...9
 BCM5481 schematics ...9
 AS1124 schematics ..9
Design layout ..16
 Layer assignments ...16
Summary ..18
 References ...18
Important Notices ..19

LIST OF FIGURES

Figure 1 DESIGN Block Diagram ...5
Figure 2 AS1124-BCM 5481 Block Diagram ...6
Figure 3 BCM 5481 Block Diagram ..7
Figure 4 AS1124 Block Diagram ..8
Figure 5 PCB Layer Assignment ...16

LIST OF TABLES

Table 1 AN020 Revision History ...2
Table 2 Impedance Table - 6 Layers PCB Stack-up ...17
INTRODUCTION

The development of power over Ethernet (PoE) technology has given rise to a number of applications that combine the use of the RJ45 connector as both a data port and power interface. Expanding the guidelines defined by the IEEE® 802.3af™ standard, the proposed IEEE 802.3at™ standard (PoE plus) answers demands for increased power requirements per port and flexibility for power management in such systems, especially those that support the emerging triple play media processing environment.

The AS1124-BCM5481 reference design provides an example of such a system, implementing a reduced pin count gigabit media independent interface (RGMII) that provides data stream support and incorporating a power management system.

This design guide provides details about this reference design and is intended for engineers designing PoE devices using the powered device (PD) side of the network. This design guide includes implementation details, schematics and block diagrams. For simplicity, this document refers to the AS1124-BCM5481 Reference Design as the DESIGN throughout.

DEFINITIONS

Definitions for terms used in this document are defined below for reference. Terms and acronyms are listed in this section for reference.

- **AN020** Application Note xxx
- **EMI** ElectroMagnetic Interference
- **ESD** ElectroStatic Discharged
- **IEC** International Engineering Consortium
- **IEEE** Institute of Electrical and Electronics Engineers
- **PD** Powered Device

MANUAL ORGANIZATION

This document uses the following sections to provide DESIGN details:

- **Functional Overview** — Includes a block diagram and component feature lists.
- **Reference Design Implementation** — Includes a functional description of each of the interface blocks.
- **Reference Design Schematics**
- **Design Layout** — Includes considerations for layer assignments, signal trace design, and general circuit board layout.
PRODUCT FEATURES

The DESIGN provides proven technology with low-cost components that support rapid development of PoE Ethernet applications to support emerging market requirements. It offers an optimal solution that balances clock frequency and pin count for the data transmission in the Ethernet interface and provides an efficient and low-cost solution for providing a regulated and low-EMI power system for PoE PDs. Because the devices do not require special thermal handling or heat-sinks, the DESIGN minimizes required board space and height. The DESIGN also represents a competitive advantage in reducing time-to-market in developing applications quickly.

FEATURES

The DESIGN uses the following components:
- BCM5481 integrated triple-speed Ethernet transceiver
- AS1124 Powered Device (PD) Controller with integrated DC-DC Controller

APPLICATION BLOCK DIAGRAM

The AS1124-BCM5481 reference design implements an RGMII interface from the 1GBE PHY to the MAC Interface on the host interface. The application block diagram is shown below in Figure 1 for reference.

DESIGN BLOCK DIAGRAM

![Figure 1 DESIGN Block Diagram](image-url)
FUNCTIONAL OVERVIEW

The DESIGN provides the required subsystems to implement a fully compliant PoE gigabit Ethernet PHY design. Akros Silicon devices are designed to comply with the IEEE 802.3af standard to supply power and data used by a 10/100/1000 triple speed Ethernet device. The following sections provide a list of features for the BCM5481 gigabit Ethernet PHY Device and AS1124 PoE devices.

Figure 2 AS1124-BCM5481 Block Diagram

BCM5481 Features

- Single-Chip integrated triple-speed Ethernet transceiver – MAC to Magnetics:
 - 1000Base-T IEEE Std. 802.3ab
 - 100Base-T IEEE Std. 802.3u
 - 10Base-T IEEE 802.3® standard
- GMII, RGMII and MII MAC interface options.
- Ethernet @ WireSpeed™
- Integrated voltage regulators
- Trace matched output impedance
- Lineside loopback
- Low electromagnetic interference (EMI) emissions
- Cable plant diagnostics
- Robust cable sourced electrostatic discharged (CESD) tolerance
- Support for jumbo packets up to 10 KB
- Detection and correction of pair swaps (MDI crossover), pair skew, and pair polarity
- Advanced power management
- IEEE Std. 1149.1™ (JTAG) boundary scan
- Super isolate mode
- 9 x 9 mm, 100-pin FBGA Package

AS1124 Features

- Fully supports IEEE Std. 802.3af-2003 and supports pre-standard IEEE Std. 802.3at-2006™ power requirements.
- Meets IEC 61000-4-2/3/4/5/6 requirements.
- Meets IEC 60950 over-voltage protection requirements.
- Integrated rectification for superior high voltage protection.
- Integrated DC-DC converter, provides exceptional EMI performance.
- Programmable DC current limit up to 800 mA.
- Supports “two finger” classification for the proposed standard IEEE Std. 802.3at-2006 higher power PD applications.
- Provides seamless support for local power.
- Over-temperature protection.
- 5x5 mm, 20 lead QFN Package, RoHS compliant.
REFERENCE DESIGN IMPLEMENTATION

BCM5481 IMPLEMENTATION

The BCM5481 consists of a triple-speed 1000Base-T/100Base-TX/10Base-T Gigabit Ethernet transceiver integrated into a single monolithic CMOS chip. The device performs all physical-layer functions for 1000Base-T, 100Base-T, and 10Base-T Ethernet on standard category 5 unshielded twisted pair (UTP) cable. 10Base-T can also run on standard category 3, 4, and 5 UTP. The BCM5481 is a highly integrated solution combining digital adaptive equalizers, ADCs, phase-locked loops, line drivers, encoders, decoders, echo cancellers, crosstalk cancellers, and all required support circuitry. Based on Broadcom’s proven Digital Signal Processor (DSP) technology, the BCM5481 is designed to be fully compliant with GMII, RGMII, and MII specifications, allowing compatibility with industry-standard Ethernet MACs and switch controllers.

Designed for reliable operation over worst-case category 5 cable, the BCM5481 automatically negotiates with its link partner to determine the highest possible operating speed. The device detects and corrects most common wiring problems. The BCM5481 features CableChecker™ Diagnostics, which detects common cable problems including shorts, opens, and cable length.

The DESIGN implements the RGMII functionality. While any of the interface modes could be used, this mode provides a balance that uses half the clock frequency of the SGMII (lower EMI generation) and fewer signal lines/pins than the MII implementation.

Figure 3 BCM 5481 Block Diagram
AS1124 IMPLEMENTATION

The AS1124 is a single-chip, highly integrated CMOS solution for Power over Ethernet (PoE). Applications include Voice over IP (VoIP) Phones, Wireless LAN Access Point, Security and Web Cameras, Analog Telephone Adapters (ATA) and Point of Sales Terminals. The AS1124 provides the functions required for power over Ethernet Powered Device (PD) applications.

The AS1124 integrates rectification and protection circuitry, a PD controller, and a DC-DC converter. This high level of integration provides faster response to surge events and limits stray surge current from passing through sensitive circuits, such as the Ethernet PHY device. The device is designed to provide a safe low impedance discharge paths directly back to the earth ground, resulting in superior reliability and circuit protection.

AS1124 has been designed to address both EMI emission concerns and surge/over-voltage protection in POE applications. The AS1124 design minimizes transmission of system common-mode noise on to the UTP while providing high immunity to over-voltage and surge events. The DESIGN uses a single AS1124.

![Figure 4 AS1124 Block Diagram](image-url)
REFERENCE DESIGN SCHEMATICS

The schematics show the implement details for the three major components and supporting circuitry: BCM5481 1GBE PHY device and the AS1124 PoE device.

BCM5481 SCHEMATICs

The BCM5481 1GBE PHY is located on Sheet 4 of the schematics. The TRD [0:3] signal pairs interface from the PoE 1GBE Transformer. The RGMII Signals interface directly to the 1GBE MAC interface. The voltage interface is shown on Sheet 5 of the schematics.

AS1124 SCHEMATICs

The AS1124 DC-DC Converter Interface is located on Sheet 3 of the schematics. The PoE 1GBE Transformer center tap signals provide the DC voltage source signal to the AS1124 device. The remaining circuitry for the DC-DC converter is shown on Sheet 3 for reference.
AS1124- BCM5481 Reference Design

Platform	Date	Schematic Revision	Schematic Changes and/or Updates

AS1124- BCM5481 Reference Design

RJ-45 → XFMR → BCM5481 → MDIO

+12V → AS1124 → SECONDARY DC-DC → +2.5V
RGMII Signals Interface

Akros Confidential
DESIGN LAYOUT

The PCB layer assignments provide details on PCB Layers, signal routing layers, Ground planes and Power/Ground planes. Impedance information for Differential signal routing and Single-end signal routing is required for PCB Layout.

The PCB Fabrication Vendor provides this detailed information for the PCB Layout. The following information was provided by Merix (www.merix.com) for the 6 Layer PCB Stack-up.

LAYER ASSIGNMENTS

The PCB Layer Assignments are recommended for a 6 layer PCB design. Below is the recommended PCB Layer Assignment for copper thickness, copper weight, and layer thickness for each PCB layer as shown in Figure 6. The PCB Layers is assigned as follows:

<table>
<thead>
<tr>
<th>Layers</th>
<th>Signal Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1</td>
<td>Signal Routing (Top)</td>
</tr>
<tr>
<td>Layer 2</td>
<td>Ground Plane</td>
</tr>
<tr>
<td>Layer 3</td>
<td>Internal Signal Routing</td>
</tr>
<tr>
<td>Layer 4</td>
<td>Power/Ground Planes</td>
</tr>
<tr>
<td>Layer 5</td>
<td>Ground Plane</td>
</tr>
<tr>
<td>Layer 6</td>
<td>Signal Routing (Bottom)</td>
</tr>
</tbody>
</table>

The PCB stack-up supports Differential Routing at 100 Ohms and Single-Ended Routing at 50 Ohms. The Differential Routing is required for UTP Signals and TRD Signals from the RJ45, to/from the PoE transformer and to/from the 10/100/1000 Ethernet device.

![Figure 5 PCB Layer Assignments](image)

Layers

<table>
<thead>
<tr>
<th>Cu Thick (mils)</th>
<th>Cu Foil wt (oz)</th>
<th>Lam. Thick (mil)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.00</td>
<td>0.5 oz</td>
<td>Foli 0.5 oz</td>
</tr>
<tr>
<td>2</td>
<td>1.20</td>
<td>1 oz</td>
<td>Preppreg IS410 2116</td>
</tr>
<tr>
<td>3</td>
<td>1.20</td>
<td>1 oz</td>
<td>Core IS410 4mils 1-2116 1 oz / 1 oz 18x24</td>
</tr>
<tr>
<td>4</td>
<td>1.20</td>
<td>1 oz</td>
<td>Preppreg IS410 2113</td>
</tr>
<tr>
<td>5</td>
<td>1.20</td>
<td>1 oz</td>
<td>Core IS410 25mils 4-7626 0.5 oz / 0.5 oz 18x24</td>
</tr>
<tr>
<td>6</td>
<td>2.00</td>
<td>0.5 oz</td>
<td>Foli, 0.5 oz</td>
</tr>
<tr>
<td>Layers 1-6</td>
<td>Drill Type</td>
<td>Via Fill</td>
<td>57.00 Thickness over Laminate</td>
</tr>
<tr>
<td></td>
<td>PTH</td>
<td></td>
<td>61.00 Thickness over Copper</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>62.40 Thickness over Soldermask</td>
</tr>
</tbody>
</table>
The Single-Ended routing is used for high speed clock and digital signals at 50 Ohms.

The Impedance Table for the 6 Layer PCB stack-up is shown in Table 2 for reference. The Differential Routing for external layers (Layers 1 & 6) and internal layers (Layers 3 & 4) have different trace widths and line pitch. The bulk of the Differential Routing will be on external layers, depending on the complexity of the design some routing will be on internal layers.

Table 2 Impedance Table – 6 Layers PCB Stack-up

<table>
<thead>
<tr>
<th>Layer</th>
<th>Structure Type</th>
<th>Coated Microstrip</th>
<th>Target Impedance (ohms)</th>
<th>Impedance Tolerance (ohms)</th>
<th>Target Linewidth (mils)</th>
<th>Edge Coupled Pitch (mils)</th>
<th>Reference Layers</th>
<th>Modelled Linewidth (mils)</th>
<th>Modelled Impedance (ohms)</th>
<th>Co-Plane Space (mils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single Ended</td>
<td>Yes</td>
<td>50.00</td>
<td>+/-5</td>
<td>8.00</td>
<td>--</td>
<td>(2)</td>
<td>8.00</td>
<td>49.32</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Edge Coupled Differential</td>
<td>Yes</td>
<td>100.00</td>
<td>+/-10</td>
<td>4.50</td>
<td>10.00</td>
<td>(2)</td>
<td>4.50</td>
<td>101.31</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Edge Coupled Differential</td>
<td>---</td>
<td>100.00</td>
<td>+/-10</td>
<td>4.00</td>
<td>12.00</td>
<td>(2, 4)</td>
<td>4.25</td>
<td>99.20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Edge Coupled Differential</td>
<td>---</td>
<td>100.00</td>
<td>+/-10</td>
<td>4.00</td>
<td>12.00</td>
<td>(3, 5)</td>
<td>4.25</td>
<td>99.20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Single Ended</td>
<td>Yes</td>
<td>50.00</td>
<td>+/-5</td>
<td>8.00</td>
<td>--</td>
<td>(5)</td>
<td>8.00</td>
<td>49.32</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Edge Coupled Differential</td>
<td>Yes</td>
<td>100.00</td>
<td>+/-10</td>
<td>4.50</td>
<td>10.00</td>
<td>(5)</td>
<td>4.50</td>
<td>101.31</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY

The AS1124-BCM5481 reference design implements an RGMII that incorporates a power management system for PoE PDs. The design employs devices to minimize signal noise that can corrupt transmitted data and to meet regulatory EMI requirements. By using low-power, small footprint devices that do not require special heatsinks or other thermal protection, the DESIGN can be used as a reference to enable quick development of applications such as Voice over IP (VoIP) phones, wireless LAN access points, security and web cameras, Analog Telephone Adapters (ATA), and Point of Sales Terminals.

REFERENCES

This section lists any outside references that contain information not included in this document that may aid in understanding this document. Refer to the appropriate document for additional information.

- BCM5481 10/100/1000BASE-T Gigabit Ethernet Transceiver, Broadcom, 5481-DS08-R 05/14/07.

Contact Information

Akros Silicon Inc.
6399 San Ignacio Ave, Suite 250, San Jose, CA 95119 USA
Tel: (408) 746 9000 ext.100
Fax: (916) 351 8102

Email inquiries: marcom@akrossilicon.com
Website: www.akrossilicon.com
IMPORTANT NOTICES

LEGAL NOTICE

Copyright © 2006 Akros Silicon™. All rights reserved.

Other names, brands, and trademarks are the property of others.

This document is provided as a design reference and Akros Silicon assumes no responsibility or liability for the information contained in this document. Akros reserves the right to make corrections, modifications, enhancements, improvements and other changes to this reference design documentation, without notice.

Reference designs are created using Akros Silicon’s published specifications as well as the published specifications of other device manufacturers. This information may not be current at the time the reference design is built. Akros Silicon and/or its licensors do not warrant the accuracy or completeness of the specifications or any information contained therein. Akros does not warrant that the designs are production worthy. You should completely validate and test your design implementation to confirm the system functionality for your application.

Akros Silicon provides its customers with limited product warranties, according to the standard Akros Silicon terms and conditions.

For the most current product information visit us at www.akrossilicon.com

LIFE SUPPORT POLICY

LIFE SUPPORT: AKROS’ PRODUCTS ARE NOT DESIGNED, INTENDED, OR AUTHORIZED FOR USE AS COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS. NO WARRANTY, EXPRESS OR IMPLIED, IS MADE FOR THIS USE. AUTHORIZATION FOR SUCH USE SHALL NOT BE GIVEN BY AKROS, AND THE PRODUCTS SHALL NOT BE USED IN SUCH DEVICES OR SYSTEMS, EXCEPT UPON THE WRITTEN APPROVAL OF THE PRESIDENT OF AKROS FOLLOWING A DETERMINATION BY AKROS THAT SUCH USE IS FEASIBLE. SUCH APPROVAL MAY BE WITHHELD FOR ANY OR NO REASON.

“Life support devices or systems” are devices or systems which (1) are intended for surgical implant into the human body, (2) support or sustain human life, or (3) monitor critical bodily functions including, but not limited to, cardiac, respirator, and neurological functions, and whose failure to perform can be reasonably expected to result in a significant bodily injury to the user. A “critical component” is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

SUBSTANCE COMPLIANCE

With respect to any representation by Akros Silicon that its products are compliance with RoHS, Akros Silicon complies with the Restriction of the use of Hazardous Substances standard (“RoHS”), which is more formally known as Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. To the best of our knowledge the information is true and correct as of the date of the original publication of the information. Akros Silicon accepts no duty to update such statements.